777 research outputs found

    Chronic Obstructive Pulmonary Disease: Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation

    Get PDF
    Background Fixed airflow limitation and ventilation heterogeneity are common in chronic obstructive pulmonary disease (COPD). Conventional noncontrast CT provides airway and parenchymal measurements but cannot be used to directly determine lung function. Purpose To develop, train, and test a CT texture analysis and machine-learning algorithm to predict lung ventilation heterogeneity in participants with COPD. Materials and Methods In this prospective study

    Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging

    Get PDF
    Three dimensional (3D) manual segmentation of the prostate on magnetic resonance imaging (MRI) is a laborious and time-consuming task that is subject to inter-observer variability. In this study, we developed a fully automatic segmentation algorithm for T2-weighted endorectal prostate MRI and evaluated its accuracy within different regions of interest using a set of complementary error metrics. Our dataset contained 42 T2-weighted endorectal MRI from prostate cancer patients. The prostate was manually segmented by one observer on all of the images and by two other observers on a subset of 10 images. The algorithm first coarsely localizes the prostate in the image using a template matching technique. Then, it defines the prostate surface using learned shape and appearance information from a set of training images. To evaluate the algorithm, we assessed the error metric values in the context of measured inter-observer variability and compared performance to that of our previously published semi-automatic approach. The automatic algorithm needed an average execution time of ∼60 s to segment the prostate in 3D. When compared to a single-observer reference standard, the automatic algorithm has an average mean absolute distance of 2.8 mm, Dice similarity coefficient of 82%, recall of 82%, precision of 84%, and volume difference of 0.5 cm in the mid-gland. Concordant with other studies, accuracy was highest in the mid-gland and lower in the apex and base. Loss of accuracy with respect to the semi-automatic algorithm was less than the measured inter-observer variability in manual segmentation for the same task.

    Postediting prostate magnetic resonance imaging segmentation consistency and operator time using manual and computer-assisted segmentation: Multiobserver study

    Get PDF
    Prostate segmentation on T2w MRI is important for several diagnostic and therapeutic procedures for prostate cancer. Manual segmentation is time-consuming, labor-intensive, and subject to high interobserver variability. This study investigated the suitability of computer-assisted segmentation algorithms for clinical translation, based on measurements of interoperator variability and measurements of the editing time required to yield clinically acceptable segmentations. A multioperator pilot study was performed under three pre-and postediting conditions: manual, semiautomatic, and automatic segmentation. We recorded the required editing time for each segmentation and measured the editing magnitude based on five different spatial metrics. We recorded average editing times of 213, 328, and 393 s for manual, semiautomatic, and automatic segmentation respectively, while an average fully manual segmentation time of 564 s was recorded. The reduced measured postediting interoperator variability of semiautomatic and automatic segmentations compared to the manual approach indicates the potential of computer-assisted segmentation for generating a clinically acceptable segmentation faster with higher consistency. The lack of strong correlation between editing time and the values of typically used error metrics (ρ\u3c0.5) implies that the necessary postsegmentation editing time needs to be measured directly in order to evaluate an algorithm\u27s suitability for clinical translation

    A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    Get PDF
    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (

    An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology

    Get PDF
    Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee. The hybrid catalyst described herein shows comparable TOF to the previous aqueous-asymmetric Suzuki catalysts, and excellent stability under the reaction conditions to realize higher TON through longer reaction time

    Illinois Waterfowl Surveys and Investigations W-43-R-62 Annual Progress Report Period: 1 July 2014 – 30 June 2015

    Get PDF
    This study addresses the following objectives: 1)Inventory abundance and distribution of waterfowl and other waterbirds (a minimum of 10 species and guilds) during autumn migration at a minimum of 40 sites along the Illinois and central Mississippi rivers; 2) Investigate the ecology of canvasback and lesser scaup during spring migration in the central Illinois River valley (IRV) and Pool 19 of the Mississippi River; 3) Estimate waterfowl and other waterbird population sizes (a minimum of 10 species and guilds) during autumn migration using an aerial quadrat survey in the IRV for comparison with aerial inventories (Objective 1); 4) Determine breeding bird use of a minimum of 10 moist-soil wetlands managed for waterfowl during summer in central Illinois; 5) Investigate the breeding ecology of sandhill cranes during spring and summer in northeastern Illinois; 6) Distribute our findings to site managers and biologists, make recommendations for future management, and draw conclusions relevant to regional conservation planning during the project period as appropriate and requested.Illinois Department of Natural Resources, Division of Wildlife & U.S. Fish and Wildlife Service Contract Number: RC09-13FWUIUCunpublishednot peer reviewedOpe

    Application of a novel index for understanding vascular health following pharmacological intervention in a pre-clinical model of metabolic disease

    Get PDF
    While a thorough understanding of microvascular function in health and how it becomes compromised with progression of disease risk is critical for developing effective therapeutic interventions, our ability to accurately assess the beneficial impact of pharmacological interventions to improve outcomes is vital. Here we introduce a novel Vascular Health Index (VHI) that allows for simultaneous assessment of changes to vascular reactivity/endothelial function, vascular wall mechanics and microvessel density within cerebral and skeletal muscle vascular networks with progression of metabolic disease in obese Zucker rats (OZR); under control conditions and following pharmacological interventions of clinical relevance. Outcomes are compared to “healthy” conditions in lean Zucker rats. We detail the calculation of vascular health index, full assessments of validity, and describe progressive changes to vascular health index over the development of metabolic disease in obese Zucker rats. Further, we detail the improvement to cerebral and skeletal muscle vascular health index following chronic treatment of obese Zucker rats with anti-hypertensive (15%–52% for skeletal muscle vascular health index; 12%–48% for cerebral vascular health index; p < 0.05 for both), anti-dyslipidemic (13%–48% for skeletal muscle vascular health index; p < 0.05), anti-diabetic (12%–32% for cerebral vascular health index; p < 0.05) and anti-oxidant/inflammation (41%–64% for skeletal muscle vascular health index; 29%–42% for cerebral vascular health index; p < 0.05 for both) drugs. The results present the effectiveness of mechanistically diverse interventions to improve cerebral or skeletal muscle vascular health index in obese Zucker rats and provide insight into the superiority of some pharmacological agents despite similar effectiveness in terms of impact on intended targets. In addition, we demonstrate the utility of including a wider, more integrative approach to the study of microvasculopathy under settings of elevated disease risk and following pharmacological intervention. A major benefit of integrating vascular health index is an increased understanding of the development, timing and efficacy of interventions through greater insight into integrated microvascular function in combination with individual, higher resolution metrics

    Illinois Waterfowl Surveys and Investigations W-43-R-64 Annual Progress Report FY2017 Period: 1 July 2016 – 30 June 2017

    Get PDF
    Objectives 1) Inventory abundance and distribution of waterfowl, shorebirds, and other waterbirds (a minimum of 10 species and guilds) during autumn migration at a minimum of 30 sites along and nearby the Illinois and central Mississippi rivers, 2) Estimate waterfowl and other waterbird population sizes (a minimum of 10 species and guilds) during autumn migration using an aerial quadrat survey in the central Illinois River Valley for comparison with aerial inventories (Objective 1), 3) Investigate movement and population ecology of lesser scaup, canvasback, and other diving ducks by trapping and leg-banding a minimum of 1,000 individuals during spring migration along the Illinois and Mississippi rivers, 4) Investigate the ecology of American green-winged teal and gadwall by radio-marking a minimum of 40 individuals of each species during spring migration in and nearby the central Illinois River Valley, 5) Investigate movements and home range size of a minimum of 10 Canada geese during winter in and near the Greater Chicago Metropolitan Area (GCMA) of Illinois, 6) Determine habitat quality of a minimum of 50 wetland and deepwater polygons during spring, summer, and early autumn for migrating dabbling ducks, breeding wetland birds, and migrating shorebirds in Illinois, and 7) Distribute results and findings to site managers and biologists of the Illinois Department of Natural Resources (IDNR) and other state agencies, the Mississippi Flyway Technical Section, the Upper Mississippi River and Great Lakes Region (UMRGLR) Joint Venture, the U.S. Fish and Wildlife Service, other scientists and collaborators as requested, and the general public through oral presentations, popular articles, technical reports, and peer reviewed publications; make recommendations for future wetland management practices and research needs based on results and related research; contribute to regional conservation planning efforts during the project period as appropriate and requested.Illinois Department of Natural Resources, Division of Wildlife & U.S. Fish and Wildlife Service Contract Number: RC09-13FWUIUCunpublishednot peer reviewedOpe

    Imaging Biomarkers in Prostate Stereotactic Body Radiotherapy: A Review and Clinical Trial Protocol

    Get PDF
    Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria for biochemical failure. The drawbacks of this approach include lack of lesion identification, a high false-positive rate, and delay in identifying treatment failure. Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess response. Imaging findings will be correlated with prostate-specific antigen (PSA) and biopsy results, with the goal of early, non-invasive, and accurate identification of treatment failure

    Greek Yogurt and 12 Weeks of Exercise Training on Strength, Muscle Thickness and Body Composition in Lean, Untrained, University-Aged Males

    Get PDF
    Milk and/or whey protein plus resistance exercise (RT) increase strength and muscle size, and optimize body composition in adult males and females. Greek yogurt (GY) contains similar muscle-supporting nutrients as milk yet it is different in several ways including being a semi-solid food, containing bacterial cultures and having a higher protein content (mostly casein) per serving. GY has yet to be investigated in the context of a RT program. The purpose of this study was to assess the effects of GY consumption plus RT on strength, muscle thickness and body composition in lean, untrained, university-aged males. Thirty untrained, university-aged (20.6 ± 2.2 years) males were randomized to 2 groups (n = 15/group): fat-free, plain GY or a Placebo Pudding (PP; isoenergetic carbohydrate-based pudding) and underwent a combined RT/plyometric training program 3 days/week for 12 weeks. They consumed either GY (20 g protein/dose) or PP (0 g protein/dose) daily, 3 times on training days and 2 times on non-training days. After 12 weeks, both groups significantly increased strength, muscle thickness and fat-free mass (FFM) (p < 0.05). The GY group gained more total strength (GY; 98 ± 37 kg, PP; 57 ± 15 kg), more biceps brachii muscular thickness (GY; 0.46 ± 0.3 cm, PP; 0.12 ± 0.2 cm), more FFM (GY; 2.4 ± 1.5 kg, PP; 1.3 ± 1.3 kg), and reduced % body fat (GY; −1.1 ± 2.2%, PP; 0.1 ± 2.6%) than PP group (p < 0.05 expressed as absolute change). Thus, consumption of GY during a training program resulted in improved strength, muscle thickness and body composition over a carbohydrate-based placebo. Given the results of our study, the general benefits of consuming GY and its distinctiveness from milk, GY can be a plausible, post-exercise, nutrient-rich alternative for positive strength, muscle, and body composition adaptations
    corecore